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You can get maximum 100 marks and 180 minutes!

1. Let p be a prime number, let Fp be the finite field with p elements and let

G = GL2(Fp). Prove that G has only one conjugacy class of order p. Also give one

representative of this class. Suggestion: Use Jordan forms.

[15 marks]

2. Find all finite groups G such that | Aut(G) |= 1. Determine the automorphism

group Aut(S3).

[15 + 10 marks]

3. Let Fq be a finite field with q elements. A complete flag in the vector space Fn
q

is a nested sequence of linear subspaces {0} = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn−1 ⊂ Vn = Fn
q

of dimensions 0, 1, ..., n respectively. Let fn(q) be the number of complete flags in Fn
q

as a rational function of q. Find the limit of fn(q) as q tends to 1.

[10 marks]

4. Let R be a commutative ring with unity.

(i) Let I and J be prime ideals of R = Z[
√
2] such that I∩Z = 3Z and J ∩Z = 7Z.

Prove that R/I ⊗R R/J = 0.

(ii) Prove that a R-moduleM is flat if and only if TorRn (M,N) = 0 for all R-modules

N and n > 0.
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[10 + 10 marks]

5. Let f(X) be an irreducible polynomial of degree n over a field F and let

g(X) ∈ F [x]. Prove that the degree of every irreducible factor of f(g(X)) ∈ F [x] is

divisible by n. [15 marks]

6. Let f be an irreducible polynomial of degree 5 in Q[X]. Suppose that in C, f

has exactly two nonreal roots. Prove that the Galois group of the splitting field of f

is isomorphic to S5. [15 marks]

[Suggestion: Show that S5 is generated by a transposition and a 5-cycle.]
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Comprehensive Examination July, 2014 IISER Pune

Differential Equations

Date: 16 July, 2014

Instructions:

• Total Marks for this question paper is 100.

• Attempt any 6 questions.

• All questions carry equal marks.

• Please state clearly the Theorems or Results you use.

1. Give two different proofs of the following: Let Ω ⊂ R
n be open and bounded. Let

g ∈ C(∂Ω), f ∈ C(Ω). Then there exists at most one solution u ∈ C2(Ω) of the
boundary value problem

−∆u = f in Ω, u = g on ∂Ω.

Ans. Can be proved either as an Application of maximum principle for harmonic functions
or using energy methods.

2. Let f ∈ C∞

0 (Rn × [0, t0]). Let v ∈ C∞

0 (Rn × [0, t0]) satisfy

vt −∆v = f in R
n × (0, t0), v = 0 on R

n × {t = 0}.

Let ṽ :=
∫ t

0

∫

Rn
Φ(x− y, t− s) f(y, s) dy ds. Find v.

Ans. Notice that both v and ṽ are bounded functions and hence we apply the Uniqueness
for Cauchy problem and get v = ṽ.

3. Explain the calculus of variations behind the Euler-Lagrange equations for a smooth
Lagrangian. Also, find the Euler-Lagrange equation for the Lagrangian L given by
L(q, x) = 1

2
m|q|2 − φ(x), where m > 0.

Ans. Take all C2 curves starting at y at time 0 and reaching the point x at time t. A basic
question in the calculus of variations is then to find such a curve minimizing an action
functional associated to the Lagrangian. The Euler Langrange equation for the given
Lagrangian is obtained simply by substituting this L in the the standard expression of
the Euler-Lagrange Equation.

4. Consider the following non-linear system of differential equations:

ẋ =





−x2 − x1x
2
2 + x2

3 − x3
1

x1 + x3
3 − x3

2

−x1x3 − x3x
2
1 − x2x

2
3 − x5
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Use an appropriate Liapunov function to see whether the origin is a stable equilibrium
point or asymptotically stable equilibrium point or is unstable. Study the trajectories
of the linearized system ẋ = Df(0)x for this problem to justify that the origin is stable
but not asymptotically stable for the linearized system.

Ans. Use the Liapunov function V (x) = x2
1 + x2

2 + x2
3 and show that V̇ (x) < 0 for all

x ∈ R
n \ {0}. This gives that the origin is an asymptotically stable equilibrium point.

The matrix for the Linearized system is





0 −1 0
1 0 0
0 0 0



. The trajectory solves ẋ3 = 0

and hence x3 = constant. Also the matrix

(

0 −1
1 0

)

has eigenvalues i,−i. Hence

the trajectories lie on circles in planes parallel to the x1, x2 plane; hence the origin is
stable but not asymptotically stable for the linearized system.

5. Solve the following system of non-linear differential equations

ẋ1 = −x1, ẋ2 = −x2 + x2

1

and show that the stable manifold S and the unstable manifold U near the origin are
given by

S : x2 = −
x2
1

3
and U : x1 = 0.

Sketch S, U,Es and Eu; where Es, Eu are the stable and unstable subspaces of the
linearised system at the origin respectively.

Ans. First we find three successive approximations u1(t, a), u2(t, a) and u3(t, a) for the system
and use u3(t, a) to approximate S near the origin for this system. the observation that
u3(t, a) = u2(t, a) implies that uj+1(t, a) = uj(t, a) for j ≥ 2. Thus u(t, a) = u2(t, a)
which gives the exact function defining S.

The matrix A of the linearized system at the origin is

(

−1 0
0 −1

)

. The solution

is given by x1(t) = c1e
−t, x2(t) = c2e

−t + c21 (e
−t − e−2t) where c = x(0). Clearly

limt→∞ φt(c) = 0 iff c2 = −
c21
3
. Thus the expression for S. Also, limt→−∞ φt(c) = 0 iff

c1 = 0. Thus the expression for U . Es and Eu are simpler.

6. For f ∈ C1(Rn) and for each x0 ∈ R
n, the initial value problem

ẋ =
f(x)

1 + |f(x)|
, x(0) = x0

has a unique solution defined for all t ∈ R. That is, this system defines a dynamical
system on R

n. Here, please prove that the maximal interval of existence is the whole
of R.

Ans. We know that if f ∈ C1(Rn) then so is
f(x)

1 + |f(x)|
. Let x(t) be the solution of the given

IVP on the maximal interval of existence (α, β). Then, we know that x(t) satisfies the
integral equation

x(t) = x0 +

∫ t

0

f(x(s))

1 + |f(x(s))|
ds



for all t ∈ (α, β). Suppose β < ∞ then since |x(t)| ≤ |x0| + β for all t ∈ [0, β), the
solution through the point x0 at time t = 0 is contained in a compact set. But then,
β = ∞, a contradiction. Therefore, β = ∞. A similar proof shows that α = −∞.

7. The autonomous ode
u′ = f(u), u(t0) = u0

is to be solved by the numerical method

un+2 = un+1 +
∆t

12

(

5f(un+2) + 8f(un+1)− f(un)
)

. (1)

Using Taylor expansion to find the local order of the method.

Ans. Assume that f is sufficiently smooth so that the taylor Series expansion of f is valid.
(i) Expand u(t+ 2∆t) and u(t+∆t).

u(t+ 2∆t) = u(t) + 2∆t u′(t) + 2 (∆t)2 u′′(t) +
4

3
(∆t)3 u′′′(t) +O((∆t)4).

u(t+∆t) = u(t) + ∆t u′(t) +
1

2
(∆t)2 u′′(t) +

1

6
(∆t)3 u′′′(t) +O((∆t)4).

(ii) We need expansions of f(u(t+ 2∆t)) and f(u(t+∆t)).

f(u(t+2∆t)) = f(u(t))+(2∆t u′(t)+2 (∆t)2 u′′(t)) f ′(u(t))+2 (∆t)2(u′)2 f ′′(u(t))+O((∆t)3).

f(u(t+∆t)) = f(u(t))+(∆t u′(t)+
1

2
(∆t)2 u′′(t)) f ′(u(t))+

1

2
(∆t)2(u′)2 f ′′(u(t))+O((∆t)3).

(iii) Observe u′ = f(u) hence u′′ = f ′(u)u′ and u′′′ = f ′′(u) (u′)2+f ′(u)u′′ = f ′′(u) (u′)2+
(f ′(u))2u′. (iv) Finally we plug everything up in the scheme

un+2 = un+1 +
∆t

12

(

5f(un+2) + 8f(un+1)− f(un)
)

to get

u(t) + 2∆t u′(t) + 2(∆t)2u′′(t) +
4

3
(∆t)3 u′′′(t) +O((∆t)4)

= u(t) + ∆t u′(t) +
1

2!
(∆t)2u′′(t) + frac16(∆t)3 u′′′(t) +O((∆t)4)

+
∆t

12

(

5(f(u(t)) + 2∆tu′f ′(u) + 2(∆t)2u′′(t)f ′(u) + 2(∆t)2(u′)2f ′′(u))

+8(f(u(t)) + ∆tu′f ′(u) +
1

2!
(∆t)2u′′(t)f ′(u) +

1

2!
(∆t)2(u′)2f ′′(u))− f(u))

= O((∆t)4).

Hence local order is O((∆t)4).
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Write your answers in the answer sheets provided. Give full explanation with clear

statements of any theorem you use. Use no books or notes in this exam. Attempt

all problems. You have 3 hours.

1. (a) (6 points) Prove the identity:

n
∑

k=0

{

n

k

}

x(x− 1) . . . (x− k + 1) = xn.

where

{

n

k

}

denotes the Stirling partition number: the number of partitions of

{1, 2, . . . , n} into exactly k nonempty subsets.

(b) (4 points) Determine the exponential generating function of the sequence

{

0
k

}

,

{

1
k

}

, . . . ,

{

k

k

}

,

{

k + 1
k

}

, . . . .

2. (10 points) Show that the number of nonequivalent colourings of the corners of a regular

5-gon with p colours is p(p2+4)(p2+1)
10 .

3. (10 points) If G is a graph without isolated vertices, then prove that α′(G) + β′(G) = n,
where α′(G) denotes maximum size of matching, β′(G) denotes minimum size of edge cover,
and n is the number of vertices of G.

4. (10 points) Prove or disprove: If P is a u, v-path in a 2-connected graph G, then there is a
u, v-path Q that is internally disjoint from P .

5. (a) (5 points) Let M and M ′ be matchings in a bipartite graph G = (X ∪ Y,E). Suppose
that M saturates S ⊆ X and that M ′ saturates T ⊆ Y . Prove that G has a matching
that saturates S ∪ T .

(b) (5 points) Let k(G) and k′(G) denote the vertex-connectivity and edge-connectivity
respectively of a graph G. Prove that if G is a 3-regular graph then k(G) = k′(G).

6. Consider a tree T on n nodes. We wish to assign distinct numbers in the range {1, 2, . . . , n}
to the nodes. Such an assignment is called compact if for every i, the nodes with labels in
the range {1, 2, . . . , i} induce a connected subtree of T .

(a) (10 points) Suppose T is a rooted complete binary tree of depth d; in particular, it
has 2d leaves. How many compact assignments are there such that the root is assigned
the value 1? (Hint: Go recursively down the tree and at each point decide what values
will go to the root, what will go to the left subtree and what values will go to the right
subtree. To get full credit you should give a compact formula!)

(b) (9 points) Suppose T is an arbitrary (not necessarily binary) rooted tree and the root
has to assigne the value 1. Give a polynomial time algorithm that determines the
number of such compact assignments for T .

(c) (6 points) Suppose T is an arbitrary tree and there is no restriction on where the
element 1 might appear. Assume that the problem in the previous part (that is, for
rooted trees) can be solved in polynomial time. Use this to give a polynomial time
algorithm to determine the number of compact assignments for the tree T .
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7. We are given a directed graph G = (V,E). In addition we are given non-negative integers
av and bv for each vertex v ∈ V . We would like to determine a subgraph G′ = (V,E′) of
G with the maximum possible number of edges such that the following in-degree and out-
degree constraints are obeyed in G′: in-degree(v) ≤ av and out-degree(v) ≤ bv, for v ∈ V .
You have to solve this problem using network flows. First, we construct a bipartite graph
H = (V ∪ V ′, E), where V = V (G) and V ′ = {v′ : v ∈ V (G)}. That is, we duplicate the
vertices of G. The edges go from V to V ′: (u, v′) ∈ E(H) iff (u, v) ∈ E(G).

(a) (2 points) Consider the example G shown. Draw the bipartite graph H corresponding
to this graph.

a b c

e f g

h i j

(b) (3 points) The subgraph G′ of G corresponds to a subgraph H ′ of H. Show what
constraints H ′ must satisfy if G′ satisfies the degree constraints above.

(c) (7 points) Formulate the problem as a network flows problem. State clearly why max-
imum flow in this network corresponds to the optimal subgraph G′. [Hint: Add a
source vertex s to H and edges connecting it to all vertices in V , and place a sink t

with edges going into it from all vertices is V ′.] What must be the capacities on the
edges of this graph?

(d) (8 points) Now assume that all av and bv are 2 in the above example. Use a network
flows algorithm on your network to determine the best subgraph G′. Give a succinct
reason why no better subgraph than the one you found can exist?

(e) (5 points) State how one should proceed in general when the degree constraints are
not uniform. Is the maximum flow then always integral? How would you certify that
the solution found is optimal?
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There are SIX questions in this exam. All questions are compulsory. Time:
3 hours. All the best!

(1) (a) Define and give non-trivial examples of each of the following.
(i) Vector bundle.
(ii) Connection on a vector bundle.
(iii) Geodesic.

(b) State the following theorems.
(i) Seifert Van Kampen theorem.
(ii) Sard’s theorem.
(iii) Borsuk-Ulam theorem.

(2) Let f : X → Y be a covering space, where X and Y are path connected,
locally path connected topological spaces. Let x ∈ X be a point and
y = f(x). Show that for any n ≥ 2, f∗ : πn(X,x) → πn(Y, y) is an
isomorphism. Is this true for n = 1 (explain using an example) ?

(3) Consider a diagram of maps between topological spaces

EZ

g′
//

f ′

��

E

f

��

Z
g

// Y

where EZ = {(e, z) ∈ E ×Z | f(e) = g(z)} with topology induced from
E ×Z and f ′(e, z) = z. Show that if f is a covering space then so is f ′.

(4) (a) Define the chain complex for cellular homology. Clearly give the
chain group and boundary map.

(b) Let A = S1, X1 = D2 and X2 = D2. Let φ : ∂X1 → A be the
map φ(z) = z2. Let ψ : ∂X2 → A be the map ψ(z) = z3. Define
X = X1 ∪X2 ∪A/ ∼, where ∼ is the equivalence relation given by
z ∼ φ(z) for all z ∈ ∂X1 and z ∼ ψ(z) for all z ∈ ∂X2. Compute
all the homology groups of X.

(5) Let X = RP 2 × S1.
(a) Calculate all the deRham cohomology groups of X.
(b) Use the Lefschetz fixed point theorem to show that the Euler char-

acteristic of X is zero.
1
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(6) (a) Prove that S2 is not a Lie Group with respect to any group oper-
ation. (Hint: Use the Tangent bundle TS2.)

(b) Let T 2 = [0, 2π]× [0, 2π]/ ∼ where (0, y) ∼ (2π, y), (x, 0) ∼ (x, 2π).
Define the 1-form ω = sin(x) cos(y)dx+ sin(y)dy on T 2. Calculate
dωp(v, w) i.e., dω acting on the vectors v, w at the point p; where
v = (1, 2), w = (0, 1) with respect to the frame {∂/∂x, ∂/∂y} and
p = (π

2
, π
2
).


